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Fluid flow in doubly connected ducts, bounded externally by a circle and internally 
by a regular polygon of various shapes, is analysed using the finite element 
method. Hydrodynamically developed, steady, laminar flow of a constant-property 
fluid is considered. Velocity profiles as well as friction factors (at the inner and 
outer walls, and average value) are presented. These compare well to previous 
results available in the literature. Salient characteristics of flow are identified. 
Correlations for the average friction factor with aspect ratio are suggested. 
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Introduction 

Non-circular ducts are widely used in compact heat 
exchangers, regenerators for waste heat recovery, 
extrusion ducts of polymer processing plants, and heat 
exchangers employed in food-processing industries. They 
are also encountered in rod-cluster assemblies in nuclear 
reactors and in supply passages for bearings. Although 
several investigators 1'2 have studied the fluid flow and 
heat transfer characteristics of non-circular ducts, it 
appears that very little is known about the mechanism of 
fluid flow and heat transfer through non-circular annular 
passages which find applications, for example, in shipping 
casks which are used to passively cool the spent reactor 
fuel subassemblies 3'4. 

An excellent survey of laminar-flow forced 
convection in ducts has been presented by Shah and 
London 2, in which doubly connected duct geometries are 
also covered. The Schwarz-Neumann alternating 
method (an approximate method of conformal 
mapping) 5, the Gram-Schmidt ortho-normalization 
technique 6, the collocation method 7 and the least square 
approximation method s have been employed to obtain 
the solution for doubly connected ducts bounded 
externally by a circle and internally by a polygon. The 
finite difference method has been used successfully to 
tackle complex duct geometries 9'10. Experimental results 
are reported in Ref 11 for four annular passages consisting 
of an outer circular tube and an inner core of one of the 
following cross-sections: (i) equilateral triangle, (ii) right 
isosceles triangle, (iii) square, and (iv) rectangle of aspect 
ratio 1.66. The range of Reynolds number (based on 
hydraulic diameter) was from 5000 to 20 000. In Ref 12 an 
experimental investigation of fully developed laminar 
flow in a non-circular annulus bounded by a circle on the 
outside and a square on the inside is presented. 

In the present paper the results of an analysis of 
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laminar flow in non-circular annular passages bounded 
externally by a circular tube and internally by each one of 
the following cross-sections are reported: (i) equilateral 
triangle, (ii) square, (iii) regular hexagon, (iv) regular 
octagon, (v) 18-sided regular polygon. In addition, circular 
annuli are also considered for the purpose of testing the 
algorithm developed. A finite element solution algorithm 
has been developed for the two-dimensional equations for 
the motion of a constant-property Newtonian fluid in the 
laminar hydrodynamically developed regime under 
steady state conditions. It provides detailed information 
on the velocity field in addition to overall results of 
engineering interest. No difficulties such as negative 
velocity and negative shear stress values, as encountered 
by Cheng and Jamil 7, occur with the present method. 
Moreover, the present algorithm requires, for each case, 
about 5 s as CPU time on a DEC 20-50 computer system 
when the number of elements is taken as 145 (number of 
total nodes being 175) in the smallest symmetrical section 
of the duct. With just half the number of elements, 
consuming about half the time, results of accuracy 
comparable to those given in Refs 7 and 8 are obtained. 

Governing equation 
The annular passage in which flow takes place is shown in 
Fig 1. The inner core is concentric with the outer tube and 
has sharp corners. For the steady, laminar, fully 
developed flow of a Newtonian fluid with constant 
properties, the governing momentum equation in the 
dimensionless form in the cylindrical polar coordinate 
system is 

c32u 10U 1 ~2U 
~R 2 + ~ + ~  O0 z 1=0 (1) 

The boundary condition associated with Eq (1) is 

U = 0; no slip at both the boundaries (2) 

Method of solution 
The finite element method (FEM) is adopted to obtain 
numerical solutions to Eq (1). The method of weighted 
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residuals with the Galerkin criterion ~ 3 is used to obtain 
the finite element equations corresponding to Eq (1). 
Linear variation of velocity within an element is assumed. 
The elements chosen are the two-dimensional linear 
isoparametric elements13-- in particular, the elements 
formed by the cylindrical coordinates as shown in Fig 2. 

The smallest symmetrical portion, area abcd, of 
the cross-section of fluid flow is subdivided into smaller 
elements in a manner shown in Fig 2. As seen from this 
figure, the elements formed are four-node curvilinear 
quadrilaterals. The radial line at the corner, cd, is divided 
into 10 parts, while all other radial lines have more 
divisions in order to reduce the size of the elements near 
the inner wall. The latter is achieved by taking a circular 
arc from each node on the inner wall (ad) to obtain 4-node 
curvilinear quadrilaterals. Some typical elements are 
marked by hatch lines. This kind of subdivision gave 
more elements near the inner non-circular boundary, on 
which a peripheral variation of quantity like shear stress 
is expected. The results for the non-circular annular 
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Notat ion 
A Area of flow, m 2 

C 1 Constant = (dp/dz), m -  1 s-  1 
Dh Hydraulic diameter = 4A/P, m 
f Friction factor = 2Zw/5 2 (dimensionless) 
f Re Product of friction factor and Reynolds 

number (dimensionless) 
( f  Re)l Value of f Re at the inner wall ( f  is based on 

the circumferentially averaged shear stress at 
the inner wall) 

( f  Re)2 Value of f Re at the outer wall ( f  is based on 
the circumferentially averaged shear stress at 
the outer wall) 
Average f Re (ie the product of the average 
friction factor and Reynolds number) 
Wetted perimeter - P~ + P2,  m 

Perimeters of the inner and outer 
boundaries, respectively, m 
Pressure, N/m 2 
Polar coordinates: radial, m; angular, rad; 
axial, m 

f Re 

P 
Pl, P2 

p 
r,  O, Z 

R 
Rt, Rz 

R e  

u 

U 

3 
P 
P 
"C w 

Radial distance = r/R 2 (dimensionless) 
Radii of the corner of the inner core and the 
outer circular tube, m 
Reynolds number = pUDh/# (dimensionless) 
Velocity in axial (z) direction, m/s 
Velocity = u/C1R~ (dimensionless) 
Average u and average U, respectively 
Aspect ratio = R 1/R 2 (dimensionless) 
Density, kg/m 3 
Dynamic viscosity, kg/m s 
Wall shear stress, N/m 2 

Subscripts 
max Maximum velocity point 
1 Inner wall 
2 Outer wall 
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Fig 3 Velocity profiles for annulus with an equilateral 
triangular core, fl = 0.5. Number of elements is 145 

passages given here are for the mesh grid having a total of 
145 elements and 175 nodes. Smaller numbers of elements 
(from 22 to 145 elements) were also tried in order to apply 
a convergence test. The criterion for convergence was 
taken to be the overall result, ie the product of average 
friction factor and Reynolds number. A total of 145 
elements was found to be adequate. 

Resul ts  and d iscuss ion  

The results which are presented here are the velocity 
profiles (Figs 3-6), the average friction factor, and the 
friction factors at the inner and outer walls (Figs 7-8). 

Confirmatory results 

Circular annulus case 

The algorithm developed is tested with a circular annulus 
for which the exact solution is available 2. The comparison 
of both the details (Fig 6) and overall results (Fig 8) is 
found to be excellent. For  the sake of clarity, 
distinguishing points corresponding to the exact solution 
are not marked on Fig 8. The FEM solution overpredicts 
f Re, ( f  Re)l and ( f  Re)2 values--maximum deviation 
being of the order of one percent only. 

Non-circular annuli 

Comparison of the values of the product of the average 
friction factor and Reynolds number, f Re, with previous 
results 2's shows good agreement, deviation ranging from 
one percent at the low aspect ratios to about ten percent 
at the high aspect ratios. 

A high degree of similarity is also observed 
between the present velocity solution for the non-circular 
annulus for fl = 0.999 and that for the circular segment 
cross-section ( f l -1 )  of 120 ° included angle between the 
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radial lines forming the section 14, the latter being a 
limiting case for the type of non-circular annuli under 
consideration; maximum deviation is of the order of four 
percent. 

The general characteristics of the flow field are 
identified and discussed in the following paragraphs. 

Velocity field 

Velocity profiles 

Typical velocity profiles are shown in Figs 3-5. Similar 
trends of the velocity variations are found for the other 
non-circular annuli studied and for higher and lower 
aspect ratios in each case. Hence, figures for other cases 
are not given here. 

It is observed, from the velocity plots, that for low 
aspect ratios, the velocity profiles do not vary with 0 in 
most of the domain, except near the inner wall. The 
variation near the inner wall is attributed to non- 
symmetry of the inner wall with respect to 0. As the aspect 
ratio increases, the angular variation increases. This 
implies that the effect of the inner non-circular wall 
penetrates further towards the outer wall as the aspect 
ratio increases. In essence, this leads to a great 
simplification: that the velocity field in the fully developed 
region can be considered one-dimensional up to a certain 
aspect ratio dependant on the shape of the inner core as 
listed in Table 1. 

Peak velocity and shear stress distribution 

It is found that when the angular variation exists, the 
peak, U . . . .  of the velocity profile at a particular value of 0 
is highest at the section through the midpoint of the side 
of the inner core and is lowest at the section through its 
corner for all aspect ratios, for all annuli studied. 

The values of Um, x and those of U in general 
decrease with an increase in 0. In view of the common 
observation that more fluid tends to flow through the 
portion of lesser resistance, it may be concluded for the 
flow through the non-circular annular passages that the 
shear stresses in the region near and at the corner are 
more than those in the region near 0 = 0  °. This is 
substantiated by the plots of isovels (Fig 4) which show 
the distribution of shear stresses in the entire flow field if 
one observes relative distances between isovels. The shear 
stress in the region near the inner wall is larger than that 
in the region near the outer wall (Fig 4); the difference 
between the two becomes larger as the aspect ratio 
decreases. This is more clearly demonstrated in Fig 7, 
where it is seen that ( f  Reh is considerably greater than 
( f  Re)2 for low aspect ratios. This is true with each case of 
the annuli studied. 

Table 1 M a x i m u m  value of  aspect ratio at 
wh ich  veloci ty  field in ful ly  developed region 
can be considered one-dimensional  

No of inner core sides 3 and 4 6 8 18 
Aspect ratio fl 0.1 0.3 0.5 0.7 
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Fig 4 lsovels for annulus with an equilateral triangular 
core, [3 = 0.5 

Skewness of the velocity profiles 

Another effect of unequal distribution of shear stresses on 
the inner and outer walls is reflected in the skewness of the 
velocity profiles, ie the shift of the location of the peak 
velocity towards the inner wall. Such a shift is observed in 
the case of a circular annulus too, but in the case of non- 
circular annuli it is a function of 0. Non-symmetry of the 
boundary walls with 0 results in dependence on 0. The 
shift, for both the circular and the non-circular annuli, 
depends on aspect ratio: for lower aspect ratios the shift 
towards the inner wall is greater because the 
predominance of the shear stresses at the inner wall over 
those at the outer wall is greater for low aspect ratios. 

Effect of the number of core sides 

The velocity plots reveal that the angular variation of 
velocity gradually reduces as n, the number of sides of the 
regular polygonal core, increases from 3 to 18; negligible 
angular variation of velocity exists when n - 1 8  for most 
of the range of aspect ratio values (see Fig 6). It can be 
related to the sharpness of a corner of the inner core, 
which decreases as n increases. 

Comparison with the f low field in a circular annulus 

A point worth examining at this juncture is how closely 
the flow field in a non-circular annulus compares with 
that in a circular annulus. Since no angular variation is 
observed for the non-circular annuli with an 18-sided 
core, the velocity profiles for this case are compared with 
those of circular annuli (Fig 6). As seen there, the velocity 
profiles for the two annuli coincide for most of the range 
of aspect ratio. Only at higher aspect ratios is a deviation 
observed. For example, when aspect ratio is 0.9, the peak 
velocity and the velocities in the region close to it are 
overpredicted by the circular annulus profile by about 
7%. 

As shown in Fig 8, the overall quantities of 
engineering interest, namely friction factors, can be 
predicted very closely (within + 1.6 percent) for the annuli 
with an 18-sided core for aspect ratio varying from 0.02 to 
0.9 from the circular annulus results, which are well 
known. The deviation is large for aspect ratio greater than 
0.9. This is expected also, since the limiting cases when 
aspect ratio approaches 1 for the two annuli are different; 
the limiting case for the circular annulus is a parallel-plate 
configuration and that for the non-circular annulus under 
consideration is a circular segment duct. 
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Friction factors 

The variatiOns of f Re with aspect ratio have been 
reported by Cheng and Jamil 7 and by Hagan and 
Rathowsky s. The same trends as shown in Fig 8 were 
observed. 

The results for ( f  Re)l and ( f  Re)2 are expected to 
be useful in predicting the trends of the variation of 
Nusselt number for forced convective heat transfer in 
non-circular annuli, utilizing the analogy between the 
momentum and heat transfer processes, ie Reynolds' 
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analogy. This is discussed in an accompanying paper on 
heat transfer through such passages 15. 

Validity of the use of the hydraulic diameter 

The validity of the use of the hydraulic diameter D h a s  a 
characteristic length for non-circular annuli is examined. 
Though the hydraulic diameter is used in the evaluation 
of Reynolds number and f Re, it is observed that f Re 
values depend on the geometry of the annulus and that 
these values deviate significantly from those for a circular 
annulus or from that for the circular tube. Of course, f Re 
values for the non-circular annuli with an 18-sided core 
almost coincide with those for a circular annulus for the 
range of aspect ratio from 0.02 to 0.9. Thus, in most cases 
the use of the hydraulic diameter does not yield a single 
relation for all the annuli studied; the sharper the corner 
of the core, the more is the deviation from the circular 
annulus case. 
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Table 2 Constants in f Re correlat ion (cubic form of  Eq (3))  for  aspect rat io range of  0.1 to  0.9 

Number  of  core sides a 1 b 1 c I d 1 Stand. dev. 

3 21.4858 4.7089 - 1.231 7 - 9.4801 0.001 
4 22.3384 - 0.9912 1 5.8175 - 19.9758 0.004 
6 22.5653 - 0.0193 11.8938 - 13.9276 0.006 
8 22.3602 3.5026 1.7217 - 5.1489 0.004 

18 22.0220 8.4363 - 11.5402 5.3467 0.001 
Circular annulus (FEM) 21.8251 9.3210 - 13.1759 6.3515 0.001 

O v e r a l l  c o r r e l a t i o n s  

An attempt is made to relatefRe to the aspect ratio so 
that by knowing just the aspect ratio one can predict f Re 
for the annuli under consideration. Correlations are 
obtained by the least square curve-fit method employing 
a polynomial equation in/3 of the form 

f Re =a I + blfl + clfl 2 + dlf l  3 n t- . . .  (3) 

The order of the polynomial is varied from one to seven. It 
is found that the higher the order of the equation, the 
better is the fit. But for simplicity, the lowest order 
equation which has reasonably low standard deviation is 
considered. A cubic equation is found suitable. The values 
of the constraints al ,  bl, cl and d~ for each annuli studied 
are given in Table 2. 

C o n c l u s i o n s  

For the flow field in the doubly connected duct geometries 
studied, and for the solution technique used, the following 
conclusions can be drawn. 
(1) The present finite element algorithm successfully 

tackles the doubly connected ducts studied. Negative 
values of velocity and shear stresses, as encountered 
in the collocation methods 5, were not experienced 
with the present method. 

(2) The velocity field can be described by the radial 
coordinate alone in the fully developed region up to a 
certain aspect ratio dependent on the shape of the 
inner core (Table 1). 

(3) The resistance to fluid flow is predominantly high in 
the region close to the inner wall. 

(4) In the corner region the shear stresses are 
significantly high. 

(5) The hydraulic diameter Dh is not an adequate 
geometric parameter to account for the effect of the 
geometries investigated. 

(6) The average friction factor has been expressed as a 
simple function of aspect ratio (Eq (3)). 

(7) The average friction factors for the non-circular 
annuli studied are found to be less than that for a 
circular annulus for the same aspect ratio. Also, the 
friction factors for the non-circular ducts (eg for an 
equila_teral triangular duct f Re = 13.3 3; for a square 
duct f Re = 14.2) are less than that for a circular tube 
( f R e =  16). Hence, where mechanical power 
consumption is an important consideration in the 
design of heat exchangers, the application of the non- 
circular ducts and annuli is advantageous. 
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